PROJECT SELECTION FOR HIR, CIR, AND FDR

August 5, 2014

Roy D. Rissky P.E.

Selection of Treatments for Pavement Preservation

Pavement Maintenance: A systematic approach to keeping good pavements in good condition by applying the right treatment, to the right pavement, at the right time.

Condition of system overidding objective

Overriding Factor: Keep the water out!

Assessment of Pavements Pavement Management System is key component to managing a system.

Historical Database of pavements is key to choosing correct solution.

Information needed:

1. Layer Diagram (Action Type, thickness, chronological time, properties of action

2.Current Road Data: Cracking, Rutting, Smoothness, Cross slope

Electronic collection of Roadway Data with vans critical on yearly cycle

Condition Survey Report

Assessment of Pavements

Pavement Management System needs to contain a computer model to:
Rate condition of system
Make initial selection of projects
Suggest mileage for each geographical area
Model should also make suggestions on repair actions based on distresses

Tour Treatment Selection

Keys for Team:

Know capabilities of tool box of fixes
Know what distresses can be fixed with each treatment or combinations of fixes
Consider core information and layer history in picking viable options
Consider shoulder drop-offs and clearance heights on section

Roadway Core Samples

Tour Treatment Selection Keys for Team continued: Be able to identify distresses when traveling down the road with occasional stops Select cost effective treatment that will keep maintenance of the section for 5-7 years Reach consensus among team on section Time to action drives treatment Matching distresses to fixes is key to success

Distresses

Cracking: Transverse, Longitudinal, Fatigue
 Rutting
 Smoothness
 Edge Failures

Pavement Preservation Toolbox Recycling Actions

Hot In-Place Recycling

Cold In-Place Recycling

Full Depth Reclamation

Hot In Place Recycling

• What is it?

- Reworking the top 1"-3"
- Material is Heated in Layers
- Asphalt Rejuvenating Agent is added
- Placed with a Paver
- Compacted with Rollers

Candidates for HIR

Transverse thermo cracks, longitudinal cracks, and fatigue cracking in wheel paths
 Ride #'s, oxidation, and surface course rutting
 Previous actions within the top 3" is important
 Is overall structure carrying the present loads

Hot In Place Recycling

• What does it do?

- Adds life to an oxidized surface
- Removes Cracks in surface
- Removes Surface Course Ruts
- Can re-establish Cross-Slope
- Needs to go just thru layer or $\frac{1}{2}''$

above layer

Watch for false edges No width increases

HIR Benefits

- GREEN ASPECT: 100% Recycle of existing surface as opposed to 2" mill & Inlay can only use 30% of RAP on this project so 70% of aggregate needs to be virgin material.
- Only uses approximately 1% new oil verses 3-5% for HMA with RAP.
- Reduces hauling of material over existing roadway.
- Does not increase the elevation of roadway as opposed to overlays and so shoulders don't need addressing.
- No drop offs with this process.

Additional HIR Benefits

Ride Quality Versatility for varied AADT Quick Shutdown of Operation No plant site needed • Minor hauling of new materials Faster than traditional repairs Economical vs existing repairs

Typical Hot In-place Recycle Repairs

Ideal HIR Project

Notice the additional cracking present?

Good HIR Project

Potential HIR Project

Cold In Place Recycling

What is it?

- Typically Rework the top 4-5"
- Material is Milled
- Emulsion and Lime is Added or other binder
- Placed with a Paver
- Compacted with Rollers

Cold In Place Recycling

What does it do?

- Breaks up Severe Transverse Cracking Patterns
- Removes Ruts
- Can Re-establish Cross-Slope
- Can increase width, fix cross slope, adjust crown

Cold In Place Recycling

What precautions are warranted?

- Adequate Existing Pavement Structure
- Cold Days
- The train is long
- Project Selection is important

Full Depth Reclamation

What is it?

Pulverizes HMA layer and into base typically 5-12" and incorporates binder with re-claimer Compacted with vibratory sheepsfoot Trimmed to grade and cross slope Surfaced with material commensurate to traffic loads

Full Depth Reclamation

What does it do?
 Recycles worn out pavements
 Repairs all defects that caused the failure
 Re-establishes crown, cross slope, grade and loading

Full Depth Reclamation

 What precautions are warranted? Adequate subgrade condition Maintaining drainage is critical Compatibility of stabilizing agent

FDR Candidate Project

Pavement Preservation Toolbox Actions Discussed

- Hot In-Place Recycling
 - Cracking
 - Surface Coarse Rutting
 - Cross Slope
- Cold In-Place Recycling
 - Thermo & Depressed Cracking
 - Rutting
 - Crown, Cross Slope, Width
- FDR
 - Failure to carry loads
 - Crown, Cross Slope, Grade

Utility and Roadway Impacts

 HIR: (1-3") Loop detectors, Survey pins, Water/Gas valves, Manholes. Scarification process okay milling process doubtful.
 CIR: (4-5") Loop detectors, Survey pins, high crossroad pipes. Milling process would make very hard to do MH or valves unless all lowered beforehand.

FDR: (4-12") Loop detectors, Survey pins, crossroad pipes, underdrains, storm sewers, sewer lines, telephone, water and gas lines.

Geotextile Impacts

Geotextiles can cause major headaches in all processes especially with the milling heads and pulverizers. Deal breaker for most contractors.

Existing Traffic Impacts

HIR: Can be done on all volume roads with lane closures or pilot cars.

CIR: Can be done on all volume roads with lane closures or pilot cars.

FDR: Preferred to be done with road closures but can be done with pilot car if no grade change are being made.

Historical Prices

2" Hot in Place Recycle Projects Average Cost Per Mile Per Year

- HIR: 2" HIR w/chip seal is \$90-100K/ mile with Novachip \$160-180 K/mile @ 24' wide.
- CIR: 4" CIR w/ 1-1/2" HMA OL runs around \$200-225K/ mile @ 24'wide. Varies when additive changes.
- FDR: 7" FDR w/ 3" HMA OL runs around \$310-330 K/mile
 @ 24' wide
- FDR: 12" FDR w 3" HMA OL runs around 390-410K/ mile@ 24' wide
- All pricing variable with flucuation of additive used

What would you select HIR or CIR CIR or FDR

QUESTIONS

Rissky Consulting 4726 SE 25th Street Tecumseh, KS 66542 (785) 215-1215 rdrissky@gmail.com

Business Cards

Rissky Consulting

avertient rreservation

4726 SE 25th Street Tecumseh, KS 66542

(785) 215-1215 / cell (785) 379-5361 / Home

Email: rdrissky@gmail.com

Dustrol, Inc.

PO Box 309 1200 E. Main Towanda, KS 67144

Roy D. Rissky, PE Consultant e-mail: rdrissky@gmail.com

Home Phone: 785-379-5361 Cell: 785-215-1215